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Abstract

A general approach for modeling the volatility process in continuous-time

is based on the convolution of a kernel with a non-decreasing Lévy process,

which is non-negative if the kernel is non-negative. Within the framework
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of Continuous-time Auto-Regressive Moving-Average (CARMA) processes,

we derive a sufficient condition for the kernel to be non-negative, based on

which we propose a numerical method for checking the non-negativity of a

kernel function. We discuss how to adapt this approach to solving a similar

problem with the second approach to modeling volatility via the COntinuous-

time Generalized Auto-Regressive Conditional Heteroscedastic (COGARCH)

processes.

Some key words: DIRECT; global optimization; kernel; Lévy process; Volatil-

ity.

1 Introduction

Prompted by the need for analyzing financial time series, there has been

recently much work on developing models suitable for analyzing the volatil-

ity of a continuous-time process, see Andersen & Lund (1997), Comte &

Renault (1998), Barndorff-Nielsen & Shephard (2001), Brockwell (2004),

Klüppelberg et al. (2004), Brockwell & Marquardt (2005) and Brockwell

et al. (2006). There are, at least, two approaches to modeling a continuous-

time volatility process. In the first approach, the volatility process is mod-

eled as some continuous-time Auto-Regressive Moving-Average (CARMA)

process driven by a Lévy process, e.g. a compound Poisson process; see

Barndorff-Nielsen & Shephard (2001), Brockwell (2004) and Brockwell &

Marquardt (2005). Conditional on the volatility process, the observed pro-

cess (after suitable transformation) is modeled as some diffusion process.

Thus, there is no direct feedback to the volatility process from the ob-
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served process. For financial applications of the non-negative Lévy-driven

CARMA processes, see Roberts et al. (2004), or a working paper (avail-

able at http://www.econ.duke.edu/~get/wpapers/sc.pdf.) by Todorov

& Tauchen (2005). The second approach attempts to directly model the

volatility process in terms of the current and past values of the observed pro-

cess, i.e. to lift the discrete-time Generalized Auto-Regressive Conditional

Heteroscedastic (GARCH) model to the continuous-time setting. This leads

to the development of the COntinuous-time Generalized Auto-Regressive

Conditional Heteroscedastic (COGARCH) processes proposed by Klüppelberg

et al. (2004) and Brockwell et al. (2006).

For volatility modeling, the continuous-time process must be non-negative.

A stationary Lévy-driven CARMA process can be shown to be the convolu-

tion of a kernel function with a Lévy-driving process, which is non-negative

if the kernel is non-negative and the Lévy-driving process is a non-decreasing

process. Tsai & Chan (2005) showed that the kernel of a CARMA process

is non-negative if and only if its Laplace transform is completely monotone.

Based on this characterization, Tsai & Chan (2005) gave some more readily

verifiable necessary and sufficient conditions for the kernel to be non-negative

for some lower order CARMA processes. However, analogous results are lack-

ing for higher order cases. Here, we obtain some new sufficient (necessary)

conditions for the non-negativity of the kernel of a CARMA process, based

on which we propose a numerical method for verifying the non-negativity of

the kernel of a general CARMA process.

The rest of this paper is organized as follows. In § 2, we briefly review the

Lévy-driven CARMA processes. The main result is stated in § 3. We illus-
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trate our numerical approach for verifying the non-negativity of a CARMA

process in § 4. The COGARCH processes are reviewed in § 5. We point out

that the approach outlined in § 3 can be adapted to solve the non-negativity

problem for a COGARCH process. The proof of the main result is deferred

to the appendix.

2 CARMA Processes

We now recall the Lévy-driven CARMA(p, q) process introduced by Brock-

well (2000, 2001, and 2004). The Lévy process is defined in terms of infinitely

divisible distributions. Let φ(u) be the characteristic function of a distribu-

tion. We say that the distribution is infinitely divisible if, for every positive

integer n, φ(u) is the nth power of some characteristic function. Let R be a

set of real numbers. For every infinitely divisible distribution, we can define

a stochastic process {Xt, t ∈ R}, called a Lévy process, such that X0 ≡ 0,

and it has independent and stationary increments with (φ(u))t as the charac-

teristic function of Xt+s−Xs, for any s ∈ R and t ≥ 0. For more information

on Lévy processes, see Protter (1991), Bertoin (1996), Sato (1999), and Ap-

plebaum (2004). Heuristically, a Lévy-driven CARMA(p, q) process {Yt} is

defined as the solution of a p-th order stochastic differential equation with

suitable initial condition, and driven by a Lévy process and its derivatives

up to and including order 0 ≤ q < p. Specifically, for t ∈ R,

Y
(p)
t − αpY

(p−1)
t − · · · − α1Yt − α0 = σ{L

(1)
t + β1L

(2)
t + · · ·+ βqL

(q+1)
t }, (1)

where {Lt, t ∈ R} is a Lévy process with L0 ≡ 0 and EL2
1 = 1; the su-

perscript (j) denotes j-fold differentiation with respect to t, i.e. dY
(j−1)
t =
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Y
(j)
t dt, j = 1, ..., p − 1. Note that the derivatives may not be well-defined

in the usual sense; here their use merely serves as a shorthand for a vector

integral equation to be defined below. We assume that σ > 0, α1 6= 0, and

βq 6= 0.

Equation (1) can be equivalently cast in terms of the observation and

state equations (see Brockwell, 2001):

Yt = β
′

Xt, t ∈ R,

dXt = (AXt + α0δ)dt + σδdLt, (2)

where the superscript prime denotes taking the transpose,

A =























0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

α1 α2 α3 · · · αp























, Xt =























X
(0)
t

X
(1)
t

...

X
(p−2)
t

X
(p−1)
t























, δ =























0

0
...

0

1























, β =























1

β1

...

βp−2

βp−1























,

βj = 0 for j > q. The stationary mean of Yt, if it exists, can be shown

to equal −α0/α1, see Tsai & Chan (2005). The stationary mean must be

non-negative for the process to model conditional variances; for simplicity,

we henceforth assume that α0 = 0.

Provided all the eigenvalues of A have negative real parts, the process

{Xt} defined by

Xt = σ

∫ t

−∞

exp{A(t − u)}δdLu

is the strictly stationary solution of (2) for t ∈ (−∞,∞) with the correspond-

ing CARMA process given by

Yt = σ

∫ ∞

−∞

g(t − u)dLu, −∞ < t < ∞, (3)
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where g(t) = β
′

exp(At)δI[0,∞)(t). Henceforth in this paper, let λ1, · · · , λp be

the roots of α(z) = 0. Without loss of generality, assume Re(λp) ≤ · · · ≤

Re(λ2) ≤ Re(λ1) < 0, where Re(λi) denotes the real part of λi. In the case

when λ1, ..., λp are distinct and Re(λj) < 0, for j = 1, ..., p, Brockwell &

Marquardt (2005) showed that, for u ≥ 0,

g(u) =

p
∑

r=1

β(λr)

α(1)(λr)
exp(λru), (4)

where α(1) denotes its first derivative, α(z) = zp − αpz
p−1 − · · · − α1 and

β(z) = 1 + β1z + β2z
2 + · · · + βqz

q. Equation (4) implies that the kernel

function is Lipschitz continuous. Recall that the characteristic equation of

A, i.e. det(A−zI) = 0, equals α(z) = 0. We assume that all roots of α(z) = 0

and those of β(z) = 0 have negative real parts, and the two equations have

no common roots. The condition on the roots of α(z) = 0 is necessary for the

stationarity of the process whereas that on β(z) = 0 is for the process to be

of minimum phase and is akin to the invertibility condition for discrete-time

processes. We claim that if the CARMA(p, q) process {Yt} is stationary, then

αj < 0, for j = 1, ..., p. The cases of p = 1 and p = 2 can be checked by

algebra. For higher order cases, we note that the characteristic polynomial

zp − αpz
p−1 − · · · − α1 can be factorized into products of real polynomials

of degree not greater than two, all of which have positive coefficients based

on the arguments presented for orders one and two. Similarly, it can be

shown that for {Yt} to be of minimum phase, it is necessary that βj > 0, for

j = 1, ..., q.
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3 Main Results

¿From (3), the process {Yt} is non-negative if (i) the kernel g is non-negative,

and (ii) the driving Lévy process L is non-decreasing. Tsai & Chan (2005)

characterised the non-negativity of the kernel for any CARMA(p, q) process

in terms of the complete monotonicity of its Laplace transform. They made

use of this characterization to show that a necessary condition for the kernel g

of a stationary CARMA(p, q) process to be non-negative is that λ1 is real, and

λ1 < 0. Furthermore, for CARMA processes of lower orders, they derived

some readily verifiable necessary and sufficient conditions for the kernel g

to be non-negative. However, similar readily verifiable conditions for the

general case are lacking. What is more intriguing is that given a particular

set of CARMA parameters, the non-negativity of the corresponding kernel

requires checking the values of the function over the unbounded interval

[0,∞), which may be a numerically infeasible task. Interestingly, it is shown

in the main result below that under some mild conditions, the kernel is non-

negative over [0,∞) if and only if it is non-negative over some finite interval

[0, u∗], with a tractable end-point u∗. Importantly, the non-negativity of

a Lipschitz-continuous kernel over a bounded interval can be numerically

determined using some global optimization scheme; one such useful scheme

is the DIRECT method (Jones et al. 1993 and Kelley, 1999). We illustrate in

§ 4 the use of this approach to verify whether a kernel function is non-negative

or not.

THEOREM 1. Let p > q ≥ 0 and p ≥ 2. Assume the CARMA(p, q) process

{Yt} is stationary and that the roots of the characteristic equation α(z) = 0
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are distinct. Then Conditions (5), (6), (7), and (8) are sufficient for the

kernel g to be non-negative, while Conditions (5), (6), and (7) are necessary

for the kernel g to be non-negative:

λ1 is real, and λ1 < 0, (5)

β(λ1) > 0, (6)

g(u) ≥ 0, for 0 ≤ u ≤ u∗, (7)

Re(λ1) > Re(λ2), (8)

where u∗ = {(p − 1)r∗ − r1}/[r1{Re(λ1) − Re(λ2)}], r∗ = max
2≤j≤p

|rj|, and

rj = β(λj)/α
(1)(λj).

Remark: The case p = 1 and q = 0 is trivial as the necessary and sufficient

condition for non-negativity is α1 < 0. Note that Condition (8) is necessary

for u∗ to be finite. If we define u∗ to be ∞ when Re(λ1) = Re(λ2), then the

kernel g is non-negative if and only if Conditions (5)-(7) hold.

4 Numerical Examples

Below, we give two numerical examples demonstrating the use of Theorem 1

for checking the non-negativity of a kernel function. The key step of check-

ing the non-negativity of a kernel function over a bounded interval is done

via DIRECT, a global optimization technique that requires the evaluation

of the function itself but not its derivatives; see Jones et al. (1993), Kelley

(1999, pp. 149-152) and Gablonsky & Kelly (2001). Employing a global

optimization procedure is pivotal as popular optimization methods such as

the Newton-Raphson method may result in some local minimum, thereby
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leading to (possibly) fallacious conclusion about the non-negativity of the

function. The name DIRECT is derived from one of its main features, divid-

ing rectangles. For finding the global minimum, the algorithm consists of re-

cursively dividing up the bounded domain into diminishing hyper-rectangles

by (i) determining the “optimal” rectangles based on the sampled function

values at the center of the existing rectangles, i.e. choosing rectangles that

may contain the global minimum of the function and (ii) further subdividing

the “optimal” rectangles. The search is generally stopped when a budgeted

amount of function evaluations and/or number of sub-divisions of the rect-

angles is attained. There are several criteria for deciding which rectangles

are optimal, all of which presuppose the Lipschitz continuity of the func-

tion, but differ on how they balance the search between local and possible

global optima. The DIRECT method enjoys several convergence proper-

ties ( see a technical report by D. E. Finkel & C. T. Kelley, available at

www.optimization-online.org/DB_FILE/2004/08/934.pdf): (i) it is an

exhaustive search, i.e. the centers of the rectangles are eventually dense in

the domain (with unlimited number of function evaluations and rectangle

divisions), and (ii) the intermediate set of optima, as obtained when the

algorithm is stopped upon exhausting the budgeted number of function eval-

uations and/or rectangle sub-divisions, clusters around the true local and

global optima. Moreover, the DIRECT method performs well empirically

with benchmark examples and converges quickly.

The numerical examples below were conducted with a Pentium(R) IV 3.2

GHz. IBM machine using a FORTRAN program with IMSL Libraries in

a Windows XP platform. The non-negativity of the kernel g over [0, u∗] is
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checked by computing its global minimum via the modified DIRECT algo-

rithm (the file titled “DIRECTv204.tar.gz”, available at

http://plato.la.asu.edu/topics/problems/global.html) of Gablonsky

(2001, DIRECT version 2.0. User Guide, North Carolina University), with

the stopping rule of no more than about 20,000 function evaluations or 6,000

rectangle subdivisions.

Example 1: Consider a CARMA(5,0) process with α(z) = z5 + 9z4 +

37z3 + 81z2 + 92z + 40. The roots of α(z) = 0 are −1, −2 ± 2i, and −2 ± i,

and u∗ = 3.71405. It takes 0.6406 seconds for the program to find the

minimal value, which is g(0.0000278) = 0.0000000. Therefore, the kernel is

non-negative.

Example 2: Consider a CARMA(5,4) process with the α(z) polynomial

the same as the one considered in Example 1, and β(z) = 1+0.5826351866z+

2.027798934z2 + 0.5712109673z3 + 0.9520182788z4. The roots of β(z) = 0

are −0.2 ± i and −0.1 ± i, and u∗ = 39.31429. It takes 1.156 seconds for

the program to find the minimal value, which is g(0.4142046) = −0.2437303.

Therefore, the kernel is not always non-negative.

5 COGARCH Processes

We now briefly review the COGARCH processes. For further details, see

Brockwell et al. (2006). Let m, s be integers such that 1 ≤ m ≤ s, and

a0, a1, . . . , am, b1, . . . , bs ∈ R, a0 > 0, am 6= 0, bs 6= 0, and am+1 = · · · = as =
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0. Define the (s × s)-matrix B by

B =























0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−bs −bs−1 −bs−2 · · · −b1























, a =























a1

a2

...

as−1
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





















, e =























0

0
...

0

1























,

with B := −b1 if q = 1. Let {Lt}t≥0 be a Lévy process with nontrivial Lévy

measure and define the (left-continuous) volatility process {Vt}t≥0 by

Vt = a0 + a′Yt−, t > 0, V0 = a0 + a′Y0,

where {Yt}t≥0 is the unique càdlàg solution of the stochastic differential equa-

tion

dYt = BYt−dt + e(a0 + a′Yt−)d[L, L]
(d)
t , t > 0, (9)

with initial value Y0, independent of the driving Lévy process {Lt}t≥0. Here,

[L, L](d) denotes the discrete part of the quadratic covariation of {Lt}t≥0. If

the process {Vt}t≥0 is strictly stationary and non-negative almost surly, we

say that {Gt}t≥0, given by

dGt = V
1/2
t dLt, t > 0, G0 = 0,

is a COGARCH(m, s) process with parameters a0, a1, . . . , am, b1, . . . , bs and

the driving Lévy process. Brockwell et al. (2006) showed that if Y0 is such

that {Vt}t≥0 is strictly stationary, and a′ exp(Bt)e ≥ 0 for all t ≥ 0, then

{Vt}t≥0 is non-negative with probability one. Note that a′ exp(Bt)e is the

kernel of a CARMA process with autoregressive coefficients −bs, ...,−b1, and
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moving average coefficients a1, ..., am. Therefore, the results derived in Sec-

tion 3 can be applied to a COGARCH process.
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Appendix

Proof of Theorem 1

We first prove the sufficiency of Conditions (5) - (8). First note that Con-

dition (5) and the distinct eigenvalue condition of α(z) = 0 imply α(1)(λ1) =
∏p

j=2(λ1−λj) > 0, which together with Condition (6) imply r1 = β(λ1)/α
(1)(λ1) >

0. Again, by the distinct eigenvalue condition of α(z) = 0, Equation (4), Con-

ditions (5) and (8), and the fact that exp(x) ≥ 1 + x for all real x, we have,

for u ≥ u∗,

g(u) =

p
∑

k=1

rk exp(λku) (10)

= exp{Re(λ2)u}

p
∑

k=1

rk exp [{λk − Re(λ2)}u]

≥ exp{Re(λ2)u} (r1 + r1u{Re(λ1) − Re(λ2)}

−

p
∑

k=2

|rk| exp [{Re(λk) − Re(λ2)}u]

)

≥ exp{Re(λ2)u} [r1 + r1u{Re(λ1) − Re(λ2)} − (p − 1)r∗]

≥ 0. (11)
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Condition (7) and inequality (11) imply g(u) ≥ 0 for all non-negative u.

This completes the proof of the sufficiency. The necessity of (5) was shown

in Tsai & Chan (2005). The necessity of (7) is trivial. For the necessity

of (6), we note that the first term in the sum of the right hand side of (10)

is dominating and has to be non-negative. Therefore, r1 = β(λ1)/α
(1)(λ1)

must be non-negative. But α(1)(λ1) is always positive, therefore β(λ1) must

be non-negative. By the assumption that the polynomials α(·) and β(·) have

no common zeros, β(λ1) must be > 0. This proves the necessity of (6), and

therefore, completes the proof of the Theorem.
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